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The sensitivity of metabolic rate to temperature constrains the climate in

which ectotherms can function, yet the temperature dependence of meta-

bolic rate may evolve in response to biotic and abiotic factors. We

compiled a dataset on the temperature dependence of metabolic rate for het-

erotrophic ectotherms from studies that show a peak in metabolic rate at an

optimal temperature (i.e. that describe the thermal performance curve for

metabolic rate). We found that peak metabolic rates were lower in aquatic

than terrestrial habitats and increased with body mass, latitude and the opti-

mal temperature. In addition, the optimal temperature decreased with

latitude. These results support competing hypotheses about metabolic rate

adaptation, with hotter being better in the tropics but colder being better

towards the poles. Moreover, our results suggest that the temperature

dependence of metabolic rate is more complex than previously suggested.
1. Introduction
Metabolic rate is the foundation of organism function [1–3] because it

represents the sum of all potential biochemical work occurring in an organism.

This work can be allocated to growth, activity, reproduction and maintenance,

all of which drive the births and deaths that determine population growth

[4]. Thus, metabolic rate is fundamental to life at all levels of biological

organization [1,3].

At low-to-intermediate temperatures within a species’ tolerance range,

ectotherm metabolic rate typically shows an Arrhenius-like response to temp-

erature, with an activation energy that is on average 0.65 eV or a Q10 around

2–3 ([3,5,6]; but see for [7] an exception). However, metabolic rate peaks and

declines as temperature increases further [8–11]. Fully understanding the

temperature dependence of metabolic rate thus requires a focus on thermal

performance curves (TPCs) that bracket a peak metabolic rate (Mmax)

[8,10,12]. The cause of the decline in metabolic rate above the thermal optimum

(Topt) has not been established with certainty, but declining enzymatic function

at higher temperatures is a possible explanation [10,13,14]. In general, the temp-

erature dependence of metabolic rate depends on the delivery of substrates,

kinetics (average thermal energy relative to the activation energy), catalysing

enzymes (the lowering of the activation energy) and the structures that support

sites of oxidative phosphorylation (mitochondria, membranes, etc.) [2,8,15].

Thus, although multiple processes interact to determine metabolic performance

at any given temperature, TPCs emerge from underlying mechanisms to

determine organism performance across temperatures.

As an indicator of performance across a range of temperatures, TPCs reflect

evolution that maximizes fitness in a particular climate. Competing hypotheses
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Figure 1. Potential shifts in metabolic rate TPCs associated with adaptation
to warmer climates (dashed curves) or colder climates (solid curves). Four
potential hypotheses are (a) hotter is better, (b) metabolic cold adaptation,
(c) colder is better and (d ) peak matching. Circles indicate the temperature
(Topt) where metabolic rate is maximized (Mmax), and arrows show correlated
changes in Topt and Mmax between scenarios.
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make opposing predictions about how TPCs (including those

of metabolic rate) might change with climate. Because of

the constraints of low temperatures on biochemical rates, it

is possible that adapting to warmer environments generates

both a rightward shift in Topt along with an increase in

Mmax [16–20] (figure 1a). This ‘hotter is better’ (HIB) hypoth-

esis predicts a positive correlation between Topt and Mmax. By

contrast, the metabolic cold adaptation (MCA) hypothesis

suggests that organisms adapted to colder climates would

have higher metabolic rates to capitalize on the typically

reduced temporal and thermal scope of activity [21–23]

(figure 1b). The MCA does not necessarily invoke a shift in

Topt, however, predicting instead a positive relationship

between latitude (or other indicator of cold climates such

as elevation) and Mmax. As a modification of the MCA, we

propose that adapting to cold environments could also be

accompanied by a reduced Topt such that the entire TPC is

better matched to the overall climate (‘colder is better’;

figure 1c). Finally, despite some support for both the HIB

and MCA hypotheses, TPCs might simply move left or

right to match up with peaks of ambient temperature

(‘peak matching’; figure 1d ) [24]. Although these four

hypotheses appear contradictory, it is possible that they

could all play out in different settings when the benefit of

one route of adaptation outweighs another.

Here, we test for an effect of Topt and latitude on Mmax to

evaluate the competing hypotheses represented in figure 1

(HIB, MCA, colder is better, peak matching). Because of the

potential confounding effects of body mass and habitat

(aquatic versus terrestrial), we use a linear model with all

of these factors to analyse a new, exhaustive compilation of

metabolic rate TPCs that includes peaks.
2. Material and methods
We searched the literature for data on whole-organism O2

consumption or CO2 production for heterotrophic ectotherms

exposed to short-term temperature treatments, yielding 52 data-

sets (electronic supplementary material, table S1). The criteria for

inclusion were a minimum of four temperatures bracketing a

clear Topt and rates measured for organisms in a resting or

normal activity state. We used the original or alternate sources

as necessary to determine the wet body mass of each species,

the absolute value of the approximate latitude of the source

population if the species was not a laboratory strain, the habitat

type (terrestrial or aquatic) and taxonomic group.

We identified the Topt and Mmax using a bootstrapped spline

fit to each data set. The metabolic rate data came in two forms, so

we took two approaches for taking the bootstraps. For datasets

where replicate measures were available at each temperature,

we used standard bootstrap with replacement. For datasets

providing the mean and error of rates at each experimental

temperature, we created simulated datasets with the same

sample size, mean and error and used these simulated datasets

as bootstrap replicates. We extracted the maximum metabolic

rate from each fitted bootstrap to get the Mmax and the tempera-

ture at that value to give the Topt. We then used the median and

95% quantiles from these bootstrapped distributions to get our

estimate plus 95% confidence intervals. We eliminated any

spline fit that had optimal temperatures at the highest exper-

imental temperature. In all cases, we used 500 bootstrapped

replicates (electronic supplementary material, figures S1a–c).

We used linear models to test for effects of body mass,

latitude, habitat and taxa on Mmax. We included Topt as a

predictor variable to test for a relationship between Topt and
Mmax (HIB, colder is better hypotheses) while accounting for

other factors. Variance inflation factors were low (1.24–1.65),

indicating little collinearity among predictors. We started with

a model with all main effects and two-way interactions and

used backwards elimination to arrive at a final model with

only significant terms and an AIC score that differed by less

than two points from the next more complex model (electronic

supplementary material, table S2). We also assessed the effect

of latitude on Topt. We illustrated the effect of main factors on

Mmax using partial residuals from the final model, calculated as

the residuals from the full model plus the effect of each factor.
3. Results
The final model (electronic supplementary material, table S3)

indicated that Mmax was positively related to body mass (t ¼
2.94, p ¼ 0.006; figure 2a), Topt (t ¼ 2.08, p ¼ 0.046; figure 2b)

and latitude (t ¼ 2.51, p ¼ 0.017; figure 2c), with interactions

between latitude and mass (t ¼ 22.76, p ¼ 0.009) and latitude

and Topt (t ¼ 22.51, p ¼ 0.018). These interactions indicate

that the effect of latitude on Mmax is reduced at both larger

body masses and higher Topt, diminishing the overall effect

of latitude. Aquatic organisms overall had a lower Mmax

than terrestrial organisms (t ¼ 24.11, p , 0.001; figure 2d ),

and Topt declined with absolute latitude (t ¼ 23.59, p ¼
0.001; figure 2e). Because of the interactions, the best model

indicated that the link between Topt and Mmax was positive

(HIB) at lower latitudes and negative (colder is better) at

higher latitudes (figure 2f ).
4. Discussion
Our results show that peak metabolic rate varies with key

organism and environmental features. As expected, larger

organisms had higher Mmax than smaller organisms, follow-

ing standard metabolic scaling expectations [1,5]. Similarly,

terrestrial organisms showed higher Mmax than aquatic

organisms, perhaps because greater oxygen availability

could support higher metabolism, similar to how it may

support larger body size [25].
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Figure 2. Partial regression residuals showing the effects of body mass (a), Topt (b), latitude (c) and habitat (d ) as main effects on peak metabolic rate, Mmax.
(e) The relationship between absolute latitude and Topt. Plots show the fit (black line) and 95% CIs (grey region) on relationship. ( f ) Predicted effect of Topt on
Mmax at different latitudes, showing that hotter is better at low latitudes and colder is better at high latitudes. (Online version in colour.)
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Our results support the HIB hypothesis, as the peak of the

TPC increased as it moved rightward, as well as the MCA

hypothesis, because Mmax increased with latitude. However,

Topt also declined with latitude, indicating that our results

more precisely match the modification of the MCA that

‘colder is better’. Both ‘HIB’ and ‘colder is better’ arise

because latitude interacts with Topt to influence Mmax. At

low latitudes, Topt and Mmax are positively related, whereas

at high latitudes, the relationship is reversed (figure 2f ).

This outcome suggests that Topt and Mmax can evolve inde-

pendently to maximize fitness given the climate and that

there are multiple strategies to align TPCs with environ-

mental temperatures. It also may explain the discrepancy

between tropical and temperate TPCs, where tropical species

tend to show a Topt closer to the critical thermal maxima than

do temperate TPCs [26–28]. Temperate TPCs could differ this

way because the Topt is shifted lower even as the overall curve

is shifted higher, while tropical TPCs are shifted right and

higher, resulting in a steeper decline to the right of the peaks.

It is often invoked that metabolic rate increases with temp-

erature following the Arrhenius equation and a common

activation energy [3,5]. This view suggests that there is limited
variation in the temperature dependence of metabolic rate.

Testing variation in the full TPC, however, clarifies that the

temperature dependence of metabolic rate varies in complex

ways [23]. Much like TPCs for other performance metrics

that vary with climate history, predation risk or geography

[29–33], metabolic rate TPCs change shape in response to

key factors such as body mass, habitat and geography, indicat-

ing full TPCs are essential for understanding the temperature

dependence of metabolic rate [8,34].
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